Air Wedges and Newton's Rings lab

Note: Be sure to get the required lab group Number from your teacher.

Air Wedges

You will first practice using the air wedge formula T = $\frac{\lambda L}{2 \Delta x}$ for known thickness.

- 1. Open the **VWedges** program
- 2. Select the wedge tab and change the thickness (T) to 500μ m+20*(group number).
- 3. Verify that the thickness, T, matches the calculations, if you measure Δx , L using the built in ruler. (**hint**: For accuracy, measure across as many nodes as you can. Use a λ of your choosing so the nodes can be easily identified and measured.)
- 4. Retry, using the same thickness, but use other λ 's (i.e. different colours). Which λ seems to give you a more accurate calculated value for T, or does it matter?
- 5. Now that you are familiar with the program, Select Material X from the dropdown box on the wedges tab.
- 6. Record the appropriate measurements and calculate the thickness of the materials.
- 7. Do the same for "Y". Ensure to show ALL calculations.

Newton's Rings

- 1. Select the Newton's Rings tab in the **VWedges** program.
- 2. Set the curvature to 60+5*group number
- 3. Set the wavelength of light to anything that you'd like to work with.
- 4. Choose "parabola" as the curvature to use.
- 5. Use the chart below or Copy the chart into your lab book
- 6. Measure the distance from the center of the lens to the middle of the appropriate fringe.
- 7. Use the number of dark/light bands from center to determine the thickness of the lens at that point.
- 8. Repeat for the circular curvature but keeping the curvature the same.
- 9. Plot the both sets of values on the same graph. Do a curve of best fit for each set of points. DON'T make the graph too small!!

Parabola $\lambda =$			Circular $\lambda =$		
Band	Distance from	Thickness	Band	Distance from	Thickness
	center			center	
1 st bright			1 st bright		
1 st dark			1 st dark		
2 nd bright			2 nd bright		
2 nd dark			2 nd dark		
3 rd bright			3 rd bright		
3 rd dark			3 rd dark		
4 th bright			4 th bright		
4 th dark			4 th dark		
5 th bright			5 th bright		
5 th dark			5 th dark		
6 th bright			6 th bright		
6 th dark			6 th dark		